

The Case for System Redundancy in Automated Conflict Detection in Aviation: Reducing the False Alert Problem

Presented by
Ellis Feldman (ellis.feldman@faa.gov)
Federal Aviation Administration
ASD-400, Investment Analysis & Operations Research

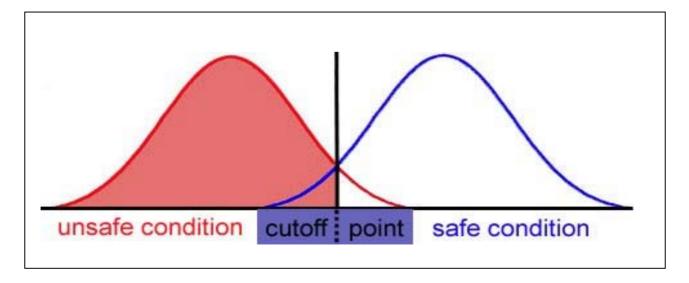
INFORMS Conference Miami Beach, Florida November 5, 2001

Examples of Detection/Warning Systems

- Smoke Detectors
- Conflict Alerting Systems (FAA Prototype User Request Evaluation Tool – URET)
- Medical Imaging/Diagnostic Testing
- Baggage Screening

Attributes of Automated Warning Systems

- Warning systems vary in their ability to discriminate unsafe conditions from safe conditions as a function of the:
 - Effectiveness of the detection algorithms
 - Accuracy/reliability of the input data



Attributes of Automated Warning Systems (Cont'd)

- Warning systems can be manipulated in terms of the amount of evidence required for an "unsafe" decision
 - Lenient vs. strict alerting threshold
- For a fixed ability to discriminate, increasing the probability of detecting dangerous conditions also increases the probability of false positives.

Definitions

- P_d Probability of an alert given an unsafe condition
- P_{fa} Probability of an alert given a safe condition
- p Prior odds of an unsafe condition
- L Likelihood ratio = relative likelihood of an alert in the presence vs. the absence of an unsafe condition = $P_d \div P_{fa}$
- PPV Positive predictive value of an alert = apostiori odds of an unsafe condition given an alert
- Fraction of alerts which are true equals PPV ÷ (1+PPV)

Practical Concerns

- Operators may respond slowly or not at all to warnings if the fraction of alerts which are true is too low, possibly below 80 or 90 percent.
- The PPV sufficient to ensure a reliable response is difficult to attain
 - Dangerous situations are usually rare events
 - Problem worsens as you make the alerting threshold more lenient (in order to get a high probability of detecting a dangerous condition; get more false alerts, for a fixed ability to discriminate)

The Bayesian Approach

- The odds ratio form of Bayes' Theorem: Positive Predictive Value = Prior odds · Likelihood ratio $PPV = p \cdot L = p \cdot (P_d \div P_{fa})$
- Some examples:

Prior odds	P_d	P _{fa}	PPV	Fraction of Alerts Which are True
.001	.99	.05	.0198	2%
.001	.90	.003	0.3	23%
.001	.99	.001	.99	50%
.001	.99	.00011	9*	90%
.0001	.99	.001	.099	9%

^{*} It is only here that the number of true alerts (warnings indicating a dangerous condition) is greater than the number of false alerts.

Mitigations

• Choose an optimal alerting threshold based on prior odds and relative costs and benefits of the two kinds of errors; namely, failing to detect a dangerous condition $(1 - P_d)$ versus falsely reporting danger (P_{fa}) . For conflict probe, the threshold may vary depending on the distance between the pair of aircraft.

• Use multiple independent probes

• $L = (P_d^{\ 1} \div P_{fa}^{\ 1}) \cdot (P_d^{\ 2} \div P_{fa}^{\ 2}) \cdot (P_d^{\ 3} \div P_{fa}^{\ 3}) \cdot \dots \cdot (P_d^{\ N} \div P_{fa}^{\ N})$ for N independent probes

Mitigations (Cont'd)

• For the examples shown in the previous table, adding a single backup probe with $P_{fa} = .05$ and $P_{d} = .99$ would increase PPV by a factor of 19.8.

Prior odds	P _d (First Probe)	P _{fa} (First Probe)	PPV (N=2 Probes)	Fraction of Alerts Which are True
.001	.99	.05	0.39	28%
.001	.90	.003	5.9	86%
.001	.99	.001	19.6	95%
.001	.99	.00011	178	99%
.0001	.99	.001	1.96	66%

• System $P_d = .99^N$ if each probe has a 99% P_d .

First Probe P_{fa} Required for Given PPV

• $P_{fa} = (1/PPV) \cdot P_d^N \cdot p \div (1-p) \div Backup_{fa}^N$

- P_{fa} for the first probe scales:
 - Linearly in conflict base rate (since p is << 1)
 - Inversely with PPV
 - Log-linearly in N
 - Inversely with the Nth power of the backup false alert rate

Required First Probe P_{fa} (Cont'd)

PPV	Prior odds	<i>N</i> =1	<i>N</i> =2	<i>N</i> =3
9	.001	0.00011	0.0022	0.043
9	.0002	0.000022	0.00044	0.0086
9	.0001	0.000011	0.00022	0.0043

- *N* is the number of probes
- Each backup probe has a .05 false alert rate
- Each probe has a .99 detection rate: System $P_d = .99^N$
- PPV = 9: the fraction of alerts which are true = 90%.

Conclusions

- Developers of automated conflict warning systems should consider the interactions among the
 - Alerting threshold
 - Prior probability of a dangerous condition
 - System sensitivity
- Multiple independent versions of automated conflict probes may be a better strategy than relying on a single version for reducing the false alert problem in automated conflict detection.
- Whether such independent versions can be implemented remains to be determined.
 - Algorithmic diversity does not guarantee independence
 - Common data inputs (e.g., erroneous forecast winds) could cause multiple versions to miss an alert
- Consider partitioning problem: Apply probes separately to portion of problem where they discriminate best.

References

- Egan, J. (1975). Signal Detection Theory and ROC Analysis. Academic Press, Inc: New York, NY.
- Feldman, E. & Weitzman, D.O. (1999). The false alert problem in automated conflict detection: Crying wolf too often. Journal of Air Traffic Control, April June, 51-55.
- Parasuraman, R., Hancock, P.A. & Olofinboba (1997). Alarm effectiveness in driver-centered collision warning systems. Ergonomics, 39, 390-399.
- Parasuraman, R. & Hancock, P.A. (1999). Using the signal detection theory and Bayesian analysis to design parameters for automated warning systems. In Automation Technology Performance, pp 63-67 (M.W. Scerbo & M. Mouloua, eds.) L. Erlbaum: Mahwah, NJ.
- Swets, J. (1992). The science of choosing the right decision threshold in high-stakes diagnostics. American Psychologist, 47, 522-532.